MATH-UA 248.001:
Number theory
Number theory
Contents
- Divisibility theory
- Interlude on natural numbers, induction and well ordering
- Divisibility
- Euclidean division, algorithm
- The fundamental theorem of arithmetic
- Arithmetic functions
- Definitions, examples
- Euler function
- Convolution, Möbius inversion
- Congruences
- Motivation
- (Z/nZ , + , .)
- Congruences and polynomials
- Linear congruence
- Group of units
- Quadratic congruences
- Continued fraction
- Generality
- Continued fractions for quadratic irrationals
- Pell's equation
- Gaussian integers
- Basic properties
- Fermat's two square theorem
- Pythagorean triples
- Primes of the form 4n+1
- Other diophantine equation
- Fermat's equation
- Mordell's equation
- The 'abc'-conjecture
- Mordell's conjecture
Schedule:
MW 3:30PM- 4:45PM Location:
CIWW 201Office hours:
Wednesday 2:00-3:00pm or by appointment.Grading:
- Homework: 10%
- Quizes: 10%
- Midterm : 30%
- Final : 50%
Recommended book:
I.N. Herstein- Topics in Algebra, 2nd edition, 1975Notes of the course
Exam basics and advice
Previous Midterm
- Midterm 2013 with solutions
Previous Quizzes
- Quiz 1 2013 with solutions
- Quiz 2 2013 with solutions
- Quiz 3 2013 with solutions
- Quiz 4 2013 with solutions
Previous Exam
Homework
- Problem set 1 with solutions
- Problem set 2 with solutions
- Problem set 3 with solutions
- Problem set 4 with solutions
- Problem set 5 with solutions
- Problem set 6 with solutions
- Problem set 7 with solutions
- Problem set 8 with solutions
- Problem set 9 with solutions
- Problem set 10 with solutions
- Problem set 11 with solutions
- Problem set 12 with solutions